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The development and structure of turbulent 
plane jets 

By K. W. EVERITTP A N D  A. G. ROBINS$ 
Department of Aeronautics, Imperial College, London 

(Received 15 August 1977 and in revised form 12 May 1978) 

The structure and development of turbulent plane jets in still air and moving streams 
are described. The nature of the small-scale turbulence cannot be accurately ascer- 
tained because of the difficulties inherent in the measurement of dissipation in highly 
turbulent flows. Although correlation measurements in a jet in still air indicate a 
large-scale structure which can best be described as ‘local flapping ’, measurements 
in a jet in a moving stream do not reveal a similar structure. The development of the 
turbulence structure in a jet in a moving parallel stream is described and the properties 
of turbulent jets and wakes are shown to be reasonably well predicted by the use of a 
variable-eddy-viscosity formula together with the formal self-preserving properties 
of the equations of motion. 

1. Introduction 
Although there are several published papers concerning the structure and develop- 

ment of two-dimensional jets in still air (Gutmark & Wygnanski 1976; Heskestad 
1 9 6 5 ~ )  and in parallel moving streams (Bradbury 1965; Bradbury & Riley 1967) a 
complete description of these Aows cannot be said to exist. The purpose of the current 
publication is to  present and discuss those results of experiments undertaken by the 
authors (Everitt 1972; Robins 1973) which either extend or modify the existing body 
of literature concerning plane turbulent jets. Significant differences are found to 
exist between the results of investigations undertaken with similar experimental tech- 
niques and, as a result, i t  is suggested that further work be carried out using pulsed 
hot-wire or laser anemometers. 

Large experimental errors are implicit in the use of hot-wire anemometers in a jet 
in still air because of the high turbulent intensities in the outer regions of the flow. 
The existence of a parallel moving stream external to the jet greatly reduces these 
problems as the mean streamwise velocity in the outer part of the flow no longer 
tends to zero. However, the flow of a jet in a moving stream is similar to  that of a jet 
in still air only when the excess velocity on the centre-line is large with respect to the 
free-stream velocity. I n  practice, a jet in a moving stream is an approximately self- 
preserving flow, whereas a jet in still air is an exactly self-preserving flow. An interest- 
ing feature of the former is that  two states of self-preservation are possible, one when 
the excess centre-line velocity is much greater than the free-stream velocity and the 
other when the excess centre-line velocity is much smaller than the free-stream velocity. 
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The latter case is similar to  a wake flow far downstream of a body. To differentiate 
between the two cases the terms ‘strong jet’ and ‘weak jet’ will be used; the former 
including a jet in still air. By analogy with wake flows, it is to  be expected that the 
self-preserving weak jet will be slow to develop, so that most experiments on jets in 
moving streams will reveal a structure which is slowly developing over a substantial 
streamwise fetch. 

2. Apparatus and instrumentation 
The jet blowing equipment used by Robins (1973) consisted of a variable-speed 

centrifugal fan supplying air through a settling chamber and contraction to a nozzle 
unit. The jet issued from the nozzle via a slot of span s = 16 in. whose height h could 
be varied from to 1 in. in steps of + in. The flow downstream of the nozzle was con- 
strained between two parallel side walls, 16 in. apart, which extended upstream of 
the nozzle and, except at their downstream ends, were flared onto a semicircular lip. 
This apparatus was later used by Goldschmidt & Bradshaw (1973) in their investi- 
gation of possible jet ‘flapping’ motions. For the work on a jet issuing into a parallel 
moving stream (Everitt 1972) a nozzle unit was incorporated into the trailing edge 
of a two-dimensional wing of symmetrical cross-section which spanned the working 
section of the Imperial College 3 x 2 f t  closed-return wind tunnel. The wing was 
supplied with air by a centrifugal fan situated beneath the tunnel; a set of 72 closely 
spaced corner vanes was used to  turn the incoming flow from the fan through 90” 
into a 24 in. by 1 in. duct and thence, via a contraction, to the 24 in. by & in. nozzle 
exit slot. It was found that away from the wall layers the flow from both nozzles was 
satisfactorily two-dimensional. 

Measurements were made using Pitot tubes and linearized constant-temperature 
hot-wire anemometers with a single wire, a single inclined wire and crossed wires. 
I n  most respects the techniques were the same as those used by Gutmark & Wygnanski 
(1976). Hot-wire results were corrected for tangential cooling (Champagne, Sleicher & 
Wehrmann 1967); Guitton (1968) has suggested that this accounts for most of the 
experimental error in the determination of the normal stresses in the central region of 
the flow. No further corrections were applied and it is to be expected that the results 
in the outer regions of the jets issuing into still air are significantly in error because 
of the high ratio of the velocity Auctuations to the local mean velocity. It is unlikely 
that correction formulae ra8n be applied in this area as many of the assumptions im- 
plicit in the development of hot-wire response equations are untenable. I n  this 
respect the data obtained from jets issuing into weak external streams give a better 
guide to the structure of the outer regions of the flow. 

3. Flow development 
For the jets issuing into still air the development of the centre-line mean velocity 

U, and longitudinal turbulence intensity 2 was investigated for a range of nozzle 
conditions, and the results obtained were used to estimate the length x1 of the poten- 
tial-core region and the position x = x2 at which the flow became fully developed. 
The variation of x1 and x2 with the nozzle conditions is compared with the results of 
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Robins 16 x 103 
30 x 103 
30 x 103 
75 x 103 

Heskestad 34 x 103 

Gutmark & Wygnanski  OX 103 

Bradbury 30 x 103 

Everitt 25 x 103 

h 
(in.) 

0.125 
0.25 
0.50 
0.75 

0.5 

0.512 

0.375 

0.1875 

128 
64 
32 
21 

120 

38 

47 

128 

6-7 
5-7 
5 
5 

7 

t True self-preservation not attained. 

TABLE 1.  Characteristic parameters of developing jet flows. 

70-100 
40-60 
20-35 
20-30 

65 t 
30-40 

40-60 

t 

other studies in table 1 (in which Uj is the jet exit velocity and 1’ is the kinematic 
viscosity). As consideration of the spread of the shear lagers downstream of the nozzle 
lip indicates, x l / h  is substantially constant. However, it is interesting to note, though 
difficult to explain, that xz/h appears to be directly related to the nozzle aspect ratio 
slh.  It is not clear from the data whether xz /h  tends to a constant asymptotic value 
for large aspect ratios. Throughout the range of the Reynolds number U j h / v ,  which 
varied from 7 x lo3 to 75 x lo3, no Reynolds number effects were evident, except 
possibly at the lowest value. Although the aspect ratio of the jets issuing into a parallel 
moving stream was not varied, the ratio Uj/Ul of the jet exit velocity to the free- 
stream velocity was varied from 2.6 to 17. (For such a flow self-preservation is possible 
as long as the ratio of the excess velocity U, on the jet centre-line to the free-stream 
velocity is much greater than unity. Bradbury (1965) suggested that this ratio does 
not, in practice, need to be much greater than unity.) If at a given station the flow 
structure depends only on the excess momentum flux introduced by the jet then, at 
a given xlh,  the non-dimensional longitudinal intensity G / U :  is a function of L\/Uo 
only. The present results (figure 1) indicate that for low ratios of the jet exit velocity 
to  the free-stream velocity the precise nozzle conditions influence the flow for a con- 
siderable distance downstream; e.g. the influence extends to about x = 160h if 
V,/U, < 3.6 and to about 230h if U,/U, < 2.9. 

It is convenient to define the local jet thickness S as the distance from the jet 
centre-line to the point where the excess velocity has fallen to one-half of its centre- 
line value. For jet flows, the rate of spread d&/dx and mean-velocity decay rate 

are generally in good agreement (table 2) .  However, the positions of the virtual origin 
are not obviously related to the nozzle conditions (see also Bradbury 1963). For a jet 
in a moving stream the hypothesis that the flow some way downstream of the nozzle 
is independent of the precise nozzle conditions leads to the result that the length 
scale to be used in considerations of the flow development is the momentum thickness 
0 of the iet, where 

O = J m  - ( - - 1 ) d y .  u u  
-a U, u, 
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FIGURE 1. Variation of centre-line longitudinal turbulence with excess velocity ratio. 

r / h :  0, 163; A, 230; X ,  322; __ , 250, Bradbury & Riley. 

Source 

Jet in still air 
Robins 0'125 0.10 0.18-0.21 0.053 - - - 

0.25 0.10-0.11 0.17-0.19 0.050 0.044 0,036 0.130 
0.50 0.11 0*14-0*18 0.049 - - - 
0.75 0.09 0.19-0.22 0.061 - - - 

Heskestad 0.50 0.11 0.16 0.070$ 0.034 0.042 0-146 

Gutmark & Wygnanski 0.512 0.10 0.17 0.074 0.043 0.035 0.152 

Jet in moving stream 
Bradbury 0.375 0.11 0.16 0.044 0.057 0.034 0.155 

Everitt, 0.1875 - 0.18 0.038* 0.038* 0.024* 0.100* 

t Centre-line values in fully developed flow. 
$ Rising to 0.108. 

* 'Strong' jet values. 

- - - -  
I pa = U 2 f V 2 + U + .  

TABLE 2. Characteristic parameters of developed jet flows. 

The collapse of the data on the jet spread and the decay of the centre-line mean 
velocity presented in figures 2 and 3 supports the above hypothesis and the absence 
of any requirement to apply virtual-origin shifts suggests that the data represent an 
improvement on previously published results. It cam be seen from table 2 that, al- 
though the results for the rate of spread and velocity decay for jets in still sir and for 
strong jets (UJU, > 5) in a moving stream are reasonably consistent (for further dis- 
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FIGURE 4. Mean-velocity and shear-stress profiles for strong jets. -, Robins; ---, Everitt; 
___ , Heskestad ; ---, Bradbury ; . . . . . . , Gutmark & Wygnanski. 

cussion of this point see Kotsovinos 1976; Bradshaw 1977), considerable scatter exists 
in the values of the centre-line turbulent intensities in the fully developed flows. It 
should be noted that Heskestad's results for ."/Ua decrease as the Reynolds number 
increases from 4.7 x lo3 to 37 x lo3 and must therefore be treated with some caution. 
A further point of interest is that, although Gutmark & Wygnanski's data show all 
three turbulence components developing a t  the same rate, the present results for jets 
in still air show that close to the nozzle 3 tends to develop most rapidly, whereas 
further downstream 2 develops most rapidly. However, the differences are nowhere 
large and all three components appear to reach their fully developed values at about 
the same position. 

4. The strong jet 
4.1.  Structure of the developed $ow 

It has already been noted that the turbulence levels in the developed flow show 
considerable scatter from one investigation to another. Results obtained for y/6 > 1.5 
on a jet in still air must be considered very unreliable as there is a significant prob- 
ability of instantaneously reversed flow and yaw angles in excess of 45"; e.g. a t  y = 1.58, 
P( U + u < 0) - 0.1. Further, because of these high local intensities, it is very unlikely 
that agreement will exist between measured shear-stress profiles and those calculated 
from the momentum equation using measured mean-velocity and normal-stress data. 
Although Bradbury and Gutmark & Wygnanski report good agreement this is the 
result of neglecting the normal-stress terms in the momentum equat.ion, which increase 
the maximum calculated shear stress by about 10 yo. However, relatively good agree- 
ment exists between the various calculated values shown in figure 4, which were 
derived from 

Also shown in this figure is a typical mean-velocity profile which is in accord with 
other investigations. The normal-stress profiles show fairly large variations from one 
investigation to another (figure 5 ) .  At first sight the results lead one to suspect that 
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FIQURE 5. Turbulence normal-stress profiles for strong jets. Symbols as in figure 4. 

puffing’ and ‘flapping’ at the jet nozzle may explain some of the differences shown 
but there is no direct evidence to support this. 

The intermittency results for strong and weak jets, with the exception of Heske- 
stad’s, which are discussed by Gutmark & Wygnanski, agree quite well and give the 
point at which the intermittency factor yg is 0.5 as y = 1.786 with a standard deviation 
about this point of approximately 0.456. The interface crossing rate ni appears to 
be a maximum between y = 1.56 and 1-78 and over this range y varies from about 0.7 
to 0-55 (figure 6). This implies that the bounding surface is not symmetric about the 
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0 + 

Y l 6  
FIQURE 6. Intermittency (solid line) and normalized interface crossing rate. 0, Robins, 

z /h  = 100; + , Bradbury, z/h = 44, 71 ; x , Gutmark & Wygnanski, z/h = 120. 

y = 0.5 point, but is more sharply folded in its troughs than on its crests. Direct 
observation of the mean durations of turbulent and non-turbulent flow support this 
description. The profiles of where I:i is the maximum crossing rate, show some 
scatter, particularly towards the central region of the flow. As it becomes progressively 
more difficult to differentiate between zero-crossings owing to turbulence and inter- 
face motion as y -+ 1, this might reflect the technique used to evaluate ni rather than 
any true scatter. The values of the maximum crossing rate quoted by Bradbury (1965) 
are 

which agree with the present values of between 0.2 and 0.3, it being assumed that 
Urn = Ul+&Uo. The flatness factors rapidly increase in the intermittent region and 
are constant (3.0) in the central region of the jet. The skewness factors of u and v 
steadily increase with distance from the jet centre, reaching a value of about 0.5 at 
y = 6 (where y = I), which indicates that the probability distribution functions of u 
and v develop a positive-going tail. 

Measurement of the diffusion and dissipation terms of the Reynolds-stress transport 
equations is difficult because of problems associated with hot-wire inaccuracies in the 
first case and problems associated hot-wire length effects and the choice of convection 
velocities in the second. For a jet in still air the direct application of Taylor’s hypo- 
thesis is not justified, though it is possible to define a modified form of the hypothesis 
from the Navier-Stokes equations. Heskestad (1 965 b )  applied order-of-magnitude 
arguments to the exact equation for (au,/at)(au,/at) and then time averaged the 
result and obtained equations for (aui/at)2, (av/at)2 etc. Strictly speaking, the order- 
of-magnitude arguments should be applied to the time-averaged equations, though 
the end result is the same. An alternative approach is to use Taylor’s hypothesis but 
with a n  effective velocity equal to the bulk convection velocity U +u:u/q2. Both 
these approaches produce dissipation profiles for a jet in still air which are plausibly 
shaped and similar to those obtained for a jet in a moving stream by direct application 
of Taylor’s hypothesis. Application of the convection-velocity hypothesis results in a 
distribution of dissipation very much like that obtained in a jet in a moving stream, 
whereas application of the modified Taylor hypothesis gives a distribution similar to 

Gi61Um = 0.3 0.1, 

-- 
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Convection velocity - 
rl !I2/ u;4t d / U $  L,/s  

0 0.130 0.0140 3.35 
0.5 0.145 0.0145 3-81 
1 0.115 0.0120 3.25 
1.5 0.055 0.0060 2.15 
2 0.015 0.0015 1-22 

Modified Taylor hypothesis - 
0.0105 4.46 
0~0110 5.02 
0.0112 3.48 
0.0090 1.43 
0.0045 0.41 

vs, L,P 

t Mean of Robins’ and Bradbury’s data. 

TABLE 3. Dissipation and dissipation length scales for developed jet. 

Jet  in still air 

Strong jet 

Weak jet 

0 1.5 1.5 
1.0 1 *o 1.0 

0 1.1 1.1 
1 -0 1.0 1.0 

0 1.7 1 *3 
1 .o 1.7 1.5 

TABLE 4. Measured structure parameters for small-scale turbulence. 

that presented by Gutmark & Wygnanski. As the data for a jet in a moving stream 
were obtained by the direct application of Taylor’s hypothesis (the flow being more 
suited to the assumptions implicit in the hypothesis) i t  may be tentatively concluded 
that the convection-velocity hypothesis is slightly better than the modified Taylor 
hypothesis. This conclusion is reinforced by consideration of the dissipation length 
scale L,, defined by e = q3/L,, as this is expected not to be a rapidly varying function 
of 7. Table 3 shows that the length scale calculated from the convection-velocity 
hypothesis is indeed more uniform than that calculated from the modified Taylor 
hypothesis data. No clear picture emerges as to the structure of the small-scale motion; 
indeed, Gutmark & Wygnanski’s data indicate that the dissipation does not take a 
self-preserving form for x < 120h’ which is in contradiction to Heskestad’s results. 
The measurements summarized in table 4 suggest that the local isotropy conditions 
( a ~ / a x ) ~  = 2(8~/ax)~, etc., do not hold. This being so, the difference between the two 
dissipation formulae 

~~~ 

15~(au/ax)~,  3 ~ ( ( 8 u / a x ) ~  + ( a v / a ~ ) ~  + ( a w / a ~ ) ~ )  

is considerable, i.e. 66% at y = 8. It is not surprising that the dissipation results 
usually have to be scaled in order for the integrated turbulent energy equation to 
balance. 

All the triple velocity products (u2v, v3, w2v and 2) occurring in the transport equa- 
tions for the turbulent energy and shear stress can be measured, though not very 
accurately. The results for jets in still air (figure 7)  agree reasonably well but it must 
be emphasized that the gradients of these terms cannot be accurately evaluated. 
Hence care should be exercised in interpreting the local imbalances in the energy 
equations plotted by Bradbury (1965), Heskestad and Gutmark & Wygnanski as an 

--- 
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FIGURE 7 .  Triple products occurring in the shear-stress and energy transport equations. (a )  
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FIGURE 8. Distribution of terms in shear-stress transport equation for jet in still air. 
(1) Production, (S /Ut )  Taulax. (2) Advection, (S/U:)  Uih</axi. (3) Pressure-strain, (8/U:)  x 
p’/p(au/@ + av/ax). (4) Diffusion, (S/U:) %>,lay). 

indication of the pressure diffusion term @Z/p) /ay .  However, the entire triple- 
product term of the energy equation, U ~ V  -+ 2p1v/p, can be approximately determined 
from the equation, and this too is plotted in figure 7. The complete term, unlike &, 
correlates reasonably well with - L,qi3( $q2)/i?y, being negative near the jet centre and 
zero at about 7 = 2 ,  which is roughly the point of maximum turbulent energy. 

- -  
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Most of the t,erms in the shear-stress transport equation can be measured and if it  
is assumed that the pressure-transport term can be ignored then the pressure-strain 
term may be evaluated. Figure 8 shows the results thus obtained and demonstrates 
that the approximation production = pressure-strain is valid over the majority of 
the flow. Bradshaw (1969) has suggested that the pressure-strain term may be repre- 
sented by 

where L is a length scale and the quantities in square brackets are combinations of 
Reynolds stresses. Consideration of the sign of the pressure-strain term on either side 
of the jet centre-line leads to the following expression: 

p(aui/axj + auj/axi) cc [UU] a u p y  + [ ~ u ~ I / L ,  

which when substituted into the production = pressure-strain form of the shear- 
stress transport equation gives, assuming 2 a ?, 

which is a variable-eddy-viscosity formula. 

4.2. Xpectra and correlations 

Spectra of the non-zero Reynolds stresses were measured a t  a number of points in 
the central region of the jets. Typical results obtained in a jet in still air at x = 100h, 
y = 0.46 are shown in figure 9, where the power spectral densities were plotted in such 
a way that they would collapse in the inertial subrange if the expected Kolmogorov 
behaviour was exhibited. It can be seen that, although a very limited subrange appears 
to exist, the collapse is poor. This is somewhat surprising because the conditions for 
the existence of an inertial subrange are more than adequately satisfied; e.g. the 
turbulent Reynolds number is approximately 400 over the central region of the jet. 
However, in addition to the errors in the turbulence-intensity data, the local mean 
velocity may well not be the true convection velocity, which itself could be a function 
of frequency, and the data must be considered inconclusive. Similar subrange beha- 
viour was observed in a jet in a moving airstream, though the spectral peaks at about 
n8/U = 0.1 were not as prominent. 

The correlation functions Rll(r, 0, 0), R,,(O, r ,  0) and R,,(O, 0, r )  were measured a t  
several positions within the jet flows; the results for separations in the x and z direc- 
tions were similar to those presented by Gutmark & Wygnanski. Figure 10 shows 
measurements of R,,(O, r ,  0) in jets in still air, the correlation being defined as 

where x is the position of the fixed probe. The most obvious feature of the results is 
the large negative lobe that occurs whenever the fixed and moving probes are on 
opposite sides of the jet centre-line. This feature, which was also observed by Gutmark 
& Wygnanski and Goldschmidt & Bradshaw (1973) (for the jet blowing apparatus 
used by Robins 1973), indicates a substantial degree of correlation between the large- 
scale motions on either side of the jet centre-line. However, strong negative lobes were 
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FIGURE 9. Spectral density functions a t  IJ = 0.46, 2 = lOOh for a jet in still air. 
O 9 p11; 0, Ii;, 3v2/4ua ; 0, E j  3w2/4ua ; + 1 p l z .  

FIGURE 10. The correlation function R,,(O, r ,  0 )  for a jet in still air. 
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FIGURE 11.  The correlation function R,,(O, r ,  0 )  for a jet in a moving stream. 
0, strong jet; A, weak jet. 

0.05 0.37 0.71 1.04 

0.22 0.25 0.25 0.17 

t R,,r positive in the -x direction. 
1 From power spectral density measurements. 

TABLE 5. Integral scales for jet in still air. 

not observed in a jet in a moving stream, as can be seen in figure 11, which shows the 
correlation 

Rll(O, T, 0) = U ( X )  U(X + Ay)/{u2(x) U’(X + Ay))*. 

Indeed, the results for both the strong and the weak jets are remarkably similar to 
those given by Grant (1958) for a two-dimensional turbulent wake. 

Integral-scale values obtained from the spectra and correlation measurements in 
jets in still air are listed in table 5 .  The results are consistent with those of Gutmark & 
Wygnanski, but because of differences in the measurement technique quantitative 
agreement cannot be expected. It is worth noting that the standard deviation of the 
intermittency distribution about the point a t  which y = 0.5 is of the same order of 
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FIGURE 12. Measured shear-stress profiles for a jet in e moving stream. 0, strong jet; A, week 

jet; Everitt; -- --, Bradbury; IJJI,  jet in still air, Robins; - , wake, Everitt. 

magnitude as the lateral integral scales. In  general the scaies increase slowly with 
increasing distance from the jet centre-line and begin to decrease only when the 
moving probe enters the jet edge. 

5. Jet issuing into a parallel moving stream 
It has already been noted that the present values for the non-dimensional longitu- 

dinal turbulence intensity $/U: exhibit a slow ihcrease with the velocity ratio Ul/U, 
and hence with downstream distance (figure 1). Although Gutmark & Wygnanski 
conclude that the data on the longitudinal turbulence intensity indicate that self- 
preservation (i.e. >/U; = constant on y = 0) occurs at about x = 40h, the present 
results show that the addition of even a weak external stream is sufficient to prevent 
the normal stresses from attaining a self-preserving form. To study this in more detail 
the structure of the turbulence was investigated for two velocity ratios: one typical 
of a strong jet flow, with Uo/Ul _N 5 (Bradbury’s value was 6); the other typical of a 
weak jet flow, with Uo/U, N 0.2. Results from the strong jet are directly comparable 
with Bradbury’s, while those for the weak jet make an interesting comparison with 
those from a nearly self-preserving, small deficit wake (Everitt 1972). 

The measured shear-stress values in the strong jet (figure 12) are significantly lower 
than those given by Bradbury (1965); for y/S < 1 they are in good agreement with 
the present data for a jet in still air. However, the addition of an external stream and 
the consequent lower local turbulent intensities near the jet edge did not improve 
the agreement between the measured and calculated values. Normal-stress values 
for the strong jet (figure 13) show considerable variations from those obtained in 
other jet flow experiments, a feature implied by the data presented in table 2. The 
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t From power spectral density measurements. 

TABLE 6. Integral scales for jet in moving stream. 

- 

0-48 

0.40 

- 

0.61 

0.62 

1.16 

- 
u2 profile is slightly lower than Bradbury’s and much lower than that for a jet in still 
air. In  the central region of the jet the present 3 profile for the strong jet is again in 
better agreement with data for a jet in still air than with Bradbury’s, while the 3 
profile, though showing a saddle shape similar to Bradbury’s, is considerably smaller 
in magnitude. In  the case of the weak jet the normal- and shear-stress profiles exhibit 
a considerable increase over the equivalent values for the strong jet, while remaining 
well below the corresponding wake values. Gutmark & Wygnanski suggested that 
the addition of a weak external stream may have a profound effect on the state of 
self-preservation. In  support of this they remarked that the high ratio of the maximum 
longitudinal intensity to the centre-line value implied by Bradbury’s results was 
indicative of a lack of true self-preservation. The present results show similar high 
values, 1-4 for both the strong and the weak jets, while the value for the wake, which was 
much closer to self-preservation than the jet, is similarly high at 1.3. Clearly, the 
turbulent structure of a jet in a parallel stream is constantly changing and, like that 
of a wake (Townsend 1976, p. 225), shows a similar slow approach to self-preservation. 

The Rll( 0,  r ,  0 )  data shown in figure I1 indicate an increase in the integral scale in 
passing from the strong to the weak jet, though the overall shapes are similar and 
the negative lobes evident in figure 10 are absent. The integral-scale values listed in 
table 6 define the increase in the relative size of large eddies, though it should be noted 
that this increase in no way accounts for the difference between jet and wake values. 

6.  Discussion 
Both a jet in st’ill air and a jet in a parallel moving stream quickly develop a similar 

mean-velocity profile, though the addition of an external stream constrains the latter 
jet to a slower, nonlinear spread. 

Although hot-wire measurements in a two-dimensional jet without an external 
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stream are unlikely to  be very accurate, especially in the outer regions of the flow, 
this cannot readily explain all of the scatter shown by the various investigations. 
Indeed, there is considerable variation between the present results and those of 
Bradbury (1965) for a jet in an  external stream even though the local turbulence in- 
tensities and flow directions are unlikely to be as detrimental to hot-wire accuracy as 
in a free jet. Both Gutmark & Wygnanski and Goldschmidt & Bradshaw have tenta- 
tively suggested that initial conditions may be important. Whereas this is almost 
certainly true in the development region, it is difficult to explain a continued influence 
in a region of true self-preservation unless jet 'flapping' and 'puffing' are important. 
It is interesting to  note that the different investigations of a jet in still air give similar 
."/Ui profiles, which suggests that any flapping is not related to nozzle conditions but 
is either a feature of the turbulence itself or some basic flow instability, though 
reasons for the high longitudinal intensities observed by Heskestad and Gutmark & 
Wygnanski cannot be stated. Obviously there is a need for further work on this 
question, possibly using laser or pulsed-wire anemometry to overcome the problems 
inherent in using hot-wire anemometers in flows of high turbulence intensity. 

The normal-stress and shear-stress profiles do, however, exhibit an important 
difference between jets with and without an external stream. Clearly the addition of 
an external stream removes the possibility of true self-preservation of the turbulent 
structure. The turbulent intensities ? / U t  etc. and the shear stress G / U i  increase 
slowly with distance from the nozzle although they remain well below the comparable 
values for a two-dimensional wake. It should, perhaps, be noted that in both of the 
present strong jet flows there was a marked difference between the measured and 
calculated shear-stress profiles. 

Measurement difficulties imply that definite conclusions concerning the state of the 
small-scale structure cannot be reached. For the measurements made in the jet in 
still air the turbulence Reynolds number (G)* h / U ,  where h is defined by the relation 
E = 15vuT/A2, fell from about 300 at y = 0 to about 200 a t  y = 6 and the dissipation 
length scale L, was in excess of a thousand times the Kolmogorov length scale (113/e)4. 

These values are sufficiently large to indicate the existence of both a significant inertial 
subrange in the velocity spectra and local isotropy of the small-scale motion. However, 
spectra and dissipation measurements do not support these conclusions and the 
matter must be left for clarification by further experiments in jet flows a t  a very 
high Reynolds number. Although the problem of defining suitable convection veloci- 
ties remains, they could be measured by methods similar to those employed by 
Wygnsnski & Fiedler (1  969). 

Approximately 80 yo of the shear stress and 40 yo of the turbulent energy in a jet 
in still air resides in an identifiable large-scale motion which also seems to be responsible 
for the large-scale features of the turbulent interface. The large-scale motions on 
either side of the jet are strongly negatively correlated, a feature which has been 
observed by several investigators and is suggestive of a large-scale motion which can 
best be described as 'local flapping'. However, the present results for a jet in a moving 
stream contradict this observation, and Grant (1958) found no such correlations in a 
two-dimensional wake. Further investigations of all the two-point correlation func- 
tions in jets with and without external streams are required before the nature of the 
large-scale motions can be ascertained, though it  appears that  the addition of even 
a weak external stream may be sufficient to inhibit local flapping. 
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The shear-stress transport equation for a jet in still air reduces to the variable-eddy. 
viscosity formula - 

uv = -Lqau /ay .  

Furthermore, as the dissipation of turbulent energy is roughly correlated with q3/L, 
and the lateral diffusion of turbuledt energy with - a/ay(Laqa(gq2)/ay) it is possible 
to use the turbulent energy equation together with the momentum equation to cal- 
culate the flow properties. This possibility was tested by making use of the formal 
self-preserving character of the equations and then numerically integrating the result- 
ing set of equations for the dependent variables UV, q and U in terms of the single 
independent variable y /6 ;  the procedure is described in the appendix. By suitable 
choice of the three length scales L, L, and La, good agreement was obtained between 
predicted and measured properties of strong jets. In  order to use the equations to 
calculate two-dimensional self-preserving wake flows it was found necessary to in- 
crease L by about 60 yo and to reduce L, and La slightly. It therefore follows that the 
main problem to be overcome in predicting the development of a jet in a moving 
stream lies in adequately describing the behaviour of the length scale L. 

The authors would like to thank Dr L. J. 5. Bradbury and the staff of the Aeronautics 
Department a t  Imperial College for their help and encouragement during the course 
of this research. Thanks are also due to the Science Research Council for the provision 
of grants. 

Appendix 
The equations to be solved are those of continuity, momentum, turbulent energy 

and shear stress. With the use of the approximations discussed in 5 6 the last two can 
be written as 

+(ua/ax+ va/ay)q2+U2)au/ay-a/ay(L,qa(~q2)/ay) + q 3 / ~ ,  = 0. 

uv = - Lq au/ay .  
- 

For a strong jet the equations can be shown to permit a self-preserving solution for 
which 6 = ax and Uo/Uj = b(x/h)-$,  and by writing 

u/uo = f  (71, q2/u; = g ; g Y r l ) ,  .v/G = g1&), 
where 7 = y/6, the equations of motion become 

f '  = -clfSqfdt/g, 0 

912 = - (a/C1) 9f ' 9 

where C, = a6/2g0L, C, = a&/2goLa, C3 = L/Lag& C, = 62/L,La. 

The boundary conditions for f and g are 

f ' ( 0 )  = g' (0)  = 0, f(0) = g(0)  = 1, 

f ( * m ) = f ' ( * m ) =  ... = 0 ,  g ( + m ) = g ' ( + m ) =  ...= 0, 

f , 9  2 0. 
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It can be shown that the equations and boundary conditions are invariant under the 
following transformations : 

f =f, 9 = 9, 7 = av, g& = ql,z/a, 

c, 3 c,/a2, c, Ez c,/a2, c, = c3, c, = C4/a2. 

Hence a solution to the equations may be found by holding C, fixed and adjusting 
C,, C, and C, until predictions satisfying the boundary conditions at infinity have been 
found. When such a solution has been found it can be converted to a convenient form 
by choosing a such that f (7 = 1 )  = 1 2’ 

The solution procedure was based on a Milne predictor-corrector method for which 
the error term is O(H5), where H is the step length. Calculations for the first two steps, 
together with the symmetry conditions, provided enough values to start the predictor- 
corrector, and the boundary conditions at the jet edge were effectively replaced by 

A step length of H = 0.005 was used and once a solution had been obtained the results 
were recalculated for H = 0.0 1, a process which tended to introduce differences into 
the fourth significant figure. Because the boundary conditions at  infinity were only 
approximately satisfied acceptable solutions could be obtained for a variety of values 
of the parameters C,, . . ., C,. The solutions to be discussed were chosen on the basis of 
reasonable values for the centre-line turbulent energy 902. Because use has been made 
of the self-preservation condition, the rate-of-spread constant a cannot be calculated, 
though conservation of momentum gives the velocity-decay constant b as 

where C,?, is the momentum flux coefficient. 

wakes, the self-preserving conditions being 
A similar procedure was adopted for the asymptotic calculations of weak jets or 

U = U,+_ Uo f (y), 6/d = a(x/d)) ,  Uo/Ul = b(x/d)-j  

and the equations of motion 

f ‘  = -C, f /S ,  

9” = (C4g2 - CZ(79)’ - C3f’2 - 29’2}/g, 

912 = T (mlC,)sf’¶ 

where m = /a2b and 

C, = m8/goL, C2 = m8/g0Ld, C, = L/L,g;, C, = 62/L,Ld. 

Conservation of momentum gives 

where C,, is the momentum excess, or deficit, flux coefficient. 
Mean-velocity profiles were well predicted for both flows, though this is scarcely 

surprising, especially as a constant-eddy-viscosity solution adequately predicts the 
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FIGURE 14. Predicted and measured shear-stress profiles. Measurements: R ,  jet, Robins; B, jet, 
Bradbury; T, wake, Townsend. Predictions: --, jet; ---, wake. 

FIGURE 
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rl 
15. Predicted and measured turbulent energy profiles. Measurements : R ,  jet, 
B, jet, Bradbury; T, wake, Townsend. Predictions: --, jet; ---, wake. 

Robins ; 

Strong jet flow Wake flow 
f 

A 
-I r 

A 
\ 

Predicted Measured Predicted Measured 

0.089 o.1ot 0.139 0.145 
3.90 3.4t, 3.7 3.33 3.25 

L/3  
L,/S - L d I S  0.178 0 . l t  0.139 

t Robins (1973). 
$ Bradbury (1965). 
3 Townsend (1976). 

TABLE 7. Predicted and measured length scales. 
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profiles over much of the flows. Figures 14 and 15 show comparisons of measured and 
predicted shear-stress and energy profiles, and table 7 gives the values of L, Ld and 
L, calculated from the parameters C,, . . . , C,. In calculating the shear stress and length 
scales the parameters a and m have been taken as 0.1. It can be seen that the agree- 
ment between the measurements and predictions is quite good; no doubt it could be 
improved by further refining the values of C,, . . . , C,, though this did not seem worth 
pursuing. A two-dimensional calculation of the flow fields would, of course, yield 
values of a and m; the value of using the self-preserving form of the equations is that 
it provides a relatively simple means of testing turbulent modelling hypotheses. Of 
course, the procedure would become more complex if further equations were intro- 
duced, say to calculate the dissipation, as this would increase the number of para- 
meters. However, in view of the success of the calculations this would not seem to be 
necessary, though it seems essential to include an equation for the length scale L,  as 
this is approximately 60 '$, higher in a wake than in a jet. The differences in the values 
of L, and Ld are probably not too important, though it might be worthwhile replacing 
the constant-L, formulation by a universal distribution L,(y/&). 
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